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The RNA interference (RNAi) technology has been successfully used in elucidating mechanisms behind
various biological events. However, in the absence of safe and effective carriers for in vivo delivery of
small interfering RNAs (siRNAs), application of this technology for therapeutic purposes has lagged
behind. The objective of this research was to develop promising carriers for siRNA delivery based on
degradable poly(ethylene oxide)-block-polyesters containing polycationic side chains on their polyester
block. Toward this goal, a novel family of biodegradable poly(ethylene oxide)-block-poly(3-capro-
lactone) (PEO-b-PCL) based copolymers with polyamine side chains on the PCL block, i.e., PEO-b-PCL
with grafted spermine (PEO-b-P(CL-g-SP)), tetraethylenepentamine (PEO-b-P(CL-g-TP)), or N,N-dime-
thyldipropylenetriamine (PEO-b-P(CL-g-DP)) were synthesized and evaluated for siRNA delivery. The
polyamine-grafted PEO-b-PCL polymers, especially PEO-b-P(CL-g-SP), demonstrated comparable
toxicity to PEO-b-PCL in vitro. The polymers were able to effectively bind siRNA, self-assemble into
micelles, protect siRNA from degradation by nuclease and release complexed siRNA efficiently in the
presence of low concentrations of polyanionic heparin. Based on flow cytometry and confocal
microscopy, siRNA formulated in PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-TP) micelles showed efficient
cellular uptake through endocytosis by MDA435/LCC6 cells transfected with MDR-1, which encodes for
the expression of P-glycoprotein (P-gp). The siRNA formulated in PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-
TP) micelles demonstrated effective endosomal escape after cellular uptake. Finally, MDR-1-targeted
siRNA formulated in PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-TP) micelles exhibited efficient gene silencing
for P-gp expression. The results of this study demonstrated the promise of novel amphiphilic PEO-b-
P(CL-g-polyamine) block copolymers for efficient siRNA delivery.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

RNA interference (RNAi) represents a promising gene silencing
technology for functional genomics and a potential therapeutic
strategy for a variety of genetic diseases [1–3]. The use of small
interference RNA (siRNAs) in gene therapy research has surged over
the past years following the discovery that the RNAi mechanism of
gene-specific silencing can be exploited in human disease therapy
[4,5]. However, due to the large molecular weight, negative charge
of siRNA duplexes, and the susceptibility to enzymatic degradation,
the effective cellular uptake and intracellular delivery of siRNA for
clinical application represent a major challenge for widespread use
: þ1 780 492 1217.
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of RNAi as a therapeutic modality or even as an investigational tool
in vivo [6–8].

Successful development of RNAi for clinical application is
dependent on the discovery of safe and effective carriers [7,9]. In
general, the ideal carrier for siRNA should be able to bind and
condense siRNA, provide protection against degradation, specif-
ically direct siRNA to target cells, facilitate its intracellular
uptake, escape from endosome/lysosome into cytosol, and finally
promote efficient gene silencing. Polymeric carriers have been of
interest for siRNA delivery because they could be chemically
engineered to meet all or some of these requirements simulta-
neously [4,10]. Among different polymers designed for siRNA
delivery, the micelle assembling block copolymers consisting of
poly(ethylene oxide) (PEO) and polycation segment such as
polyethylenimine (PEI) and poly(L-lysine) (PLL) have been
emerging as promising carriers. These polymers are displaying
properties suitable for in vivo siRNA delivery, including siRNA
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binding and condensation, self-assembly into poly-ion complex
(PIC) micelles with a diameter around 100 nm, avoiding recog-
nition by reticuloendothelial systems (RES), increasing nuclease
resistance and tolerance under physiological conditions [11–15].
However, the safety profile of these polymers containing large
polycationic segments and their non-biodegradable nature in
some cases (e.g., PEI containing polymers) remain an obstacle
for clinical application. In this regard, development of siRNA
carriers based on biomaterials with a more proven safety record
is desirable.

Copolymers with PEO as the shell-forming block and poly-
ester as the core-forming block, such as PEO-b-P(3-caprolactone)
(PEO-b-CL), PEO-b-polylactide (PEO-b-PLA) and PEO-b-P(lactide-
co-glycolide) (PEO-b-PLGA), are more-established biomaterials
for drug delivery [16–18]. The biocompatibility of both the PEO
and the polyester block has been demonstrated. PEO has been
extensively used for coating different pharmaceuticals to modify
their pharmacokinetics, increase their safety or lower their
immunogenicity [19,20]. Polyesters are proven biodegradable
polymers and have a history of safe application in absorbable
biomedical devices such as sutures [21,22]. However, the lack of
cationic moieties in PEO or polyester blocks limits their useful-
ness for gene or siRNA delivery [23]. In this study, we reported
on the synthesis of a novel family of PEO-b-polyester copoly-
mers grafted with short cationic moieties on polyester segments
and explored their safety and potential for the formation of PIC
micelles for efficient siRNA delivery.
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2. Materials and methods

2.1. Materials

Diisopropyl amine (99%), benzyl chloroformate (tech. 95%), sodium (in ker-
osin), butyl lithium (Bu-Li) in hexane (2.5 M solution), 3,3-diethoxy-1-propanol
(DEP), naphthalene, ethylene oxide (EO), branched PEI (25 kDa), N,N-dicylcohexyl
carbodiimide (DCC), N-hydroxysuccinimide (NHS), pyrene, spermine (SP), tet-
raethlyenepentamine (TP), and N,N-dimethyldipropylenetriamine (DP) were
purchased from Sigma Chemicals (St. Louis, MO, USA). 3-Caprolactone was
purchased from Lancaster Synthesis (Heysham, UK) and distilled by calcium
hydride before use. Stannous octoate was purchased from MP Biomedicals Inc.
(Eschwege, Germany). Potassium naphthalene solution was prepared by
conventional method and the concentration was determined by titration [24].
The scrambled siRNA (Silencer� Negative siRNA and Silencer� FAM�-labeled
Negative siRNA) and the anti-MDR-1 siRNA (MDR-1 siRNA) were purchased from
Ambion (Austin, TX). Cell culture media RPMI 1640, penicillin–streptomycin, fetal
bovine serum, L-glutamine and HEPES buffer solution (1 M) were purchased form
GIBCO, Invitrogen Corp (USA). All other chemicals were reagent grade. MDA435/
LCC6 cells transfected with MDR-1 overexpressing P-glycoprotein (P-gp) on their
cell membrane, were a gift from the laboratory of Dr. Clarke (Georgetown
University Medical School, Washington, DC) [25,26]. Cells were grown as
adherent cultures and maintained in RPMI 1640 supplemented with 10% fetal
bovine serum at 37 �C and 5% CO2.
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Scheme 1. Synthetic procedure for the preparation of PEO-b-PCL with grafted SP, TP
and DP.
2.2. Synthesis of PEO-b-PCL with grafted polyamine

Poly(ethylene oxide)-b-poly(3-caprolactone-g-polyamine) (PEO-b-P(CL-g-poly-
amine)) block copolymers were prepared from PEO-b-poly(a-carboxyl-3-capro-
lactone) (PEO-b-PCCL). The synthesis of PEO-b-PCCL has been described in detail
previously [27]. Briefly, PEO-b-poly(a-benzyl carboxylate-3-caprolactone) (PEO-
b-PBCL) block copolymer was synthesized by ring-opening polymerization of
a-benzylcarboxylate-3-caprolactone (BCL) using a-methoxy-PEO (PEO) as an initiator
(Mn¼ 5000 g mol�1, Mw/Mn¼ 1.05). Then protective benzyl group of the benzyl-
substituted units were removed by the catalytic debenzylation of PEO-b-PBCL in the
presence of H2 to obtain PEO-b-PCCL. Then, active ester method was used to attach
pendant polyamine groups to the polyester section by the amide bond formation using
NHS/DCC catalyst system (Scheme 1). In a typical process, PEO-b-PCCL (200 mg,
w0.01 mmol) was dissolved in 10 mL of dry THF. After addition of DCC and NHS in THF,
the solution was stirred for 2 h until a precipitate was formed. The precipitate was
removed by filtration. The polyamines, SP, TP, and DP, were dissolved in THF and added
drop-wise to the polymer solution. The reaction proceeded for another 24 h under
stirring at room temperature. The resulting solution was centrifuged to remove the
precipitate followed by evaporation under vacuum to remove the solvents. Methanol
(10 mL) was introduced to dissolve the product. The resulting solution was then
dialyzed (molecular weight cut-off of 3500 Da) extensively against water and the
polymer solution was freeze-dried for further use.

The composition of the reaction products was determined by a 300 MHz 1H
NMR spectroscope (Bruker 300 AM; Billerica MA). The solvent used for 1H NMR was
D2O for PEO-b-P(CL-g-SP), PEO-b-P(CL-g-TP) and CDCl3 for PEO-b-P(CL-g-DP),
respectively. The polyamine substitution level and the molecular weight of the
synthesized copolymers were estimated based on peak intensity ratio of the
methylene protons from polyamine (–CH2–NH–) and PEO (–CH2CH2O–). The
compositions of the synthesized PEO-b-P(CL-g-polyamine) copolymers were also
confirmed by infra-red (IR) spectroscopy using a Nicolet Magna-IR 550 Spectro-
photometer (WI, USA).

2.3. Cytotoxicity

The cytotoxicity of various PEO-b-P(CL-g-polyamine) copolymers against MDR-1-
transfected MDA435/LCC6 cells was evaluated using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MDA435/LCC6 cells (4000 cells/
well) were seeded into 96-well plates. After overnight incubation, the culture
medium was replaced with 200 mL serial diluted solutions of the polymers, and the
wells were incubated for another 48 h. Then, 20 mL of MTT stock solution in phos-
phate buffered saline (PBS) was added to each well. After 3 h, medium was aspirated
and the precipitated formazan was dissolved in 200 mL of DMSO. Cell viability was
determined by measuring the optical absorbance differences between 570 and
650 nm using a PowerwaveX340 microplate reader (BIO-TEK Instruments, Inc. VT,
USA). The relative cell growth % related to the control containing cell culture
medium without polymer was calculated by [A]test/[A]control� 100. All the tests were
performed in triplicate. The concentration of drugs leading to 50% cell growth
inhibition (IC50) was estimated from the plot of the percentage of viable cells versus
log DOX concentration for each treatment.

2.4. Haemolysis assay

The synthesized PEO-b-P(CL-g-polyamine) copolymers, PEI and Triton X-100
(1%, w/v) were dissolved in PBS (pH 7.4). Using blood obtained from a male Sprague-
Dawley rat by cardiac puncture, erythrocytes were isolated by centrifugation at



Fig. 1. 1H NMR of (A) PEO-b-P(CL-g-SP), (B) PEO-b-P(CL-g-TP) in D2O and (C) PEO-b-
P(CL-g-DP) in CDCl3.
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1500 g for 10 min at 4 �C. The cell pellet was resuspended to obtain a 2% (w/v)
erythrocyte suspension with pre-chilled PBS, and then added into a 96-well plate
(100 mL/well). 100 mL of test samples were then added to the erythrocyte suspension
in the multiwell plate which was incubated at 37 �C for 1 h. The supernatant from
each sample was removed to a new plate and the absorbance was measured at
550 nm using a microplate reader. The haemolysis % of each polymer was estimated
by comparing their absorbance to that from Triton X-100 treatment, which led to
100% haemolysis and was used as the positive control.

2.5. Determination of siRNA binding by gel retardation assay

The siRNA binding ability of the PEO-b-P(CL-g-polyamine) copolymers was
analyzed by agarose gel electrophoresis [28]. The PEO-b-P(CL-g-polyamine)/siRNA
complexes were prepared by mixing 8 mL of 0.1 M HEPES buffer (pH 6.5) with 4 mL of
negative siRNA (containing 2 mg siRNA) and 8 mL of serially-diluted concentrations of
a PEO-b-P(CL-g-polyamine) solution (containing polymers ranging from 1 to 64 mg)
and incubated for 30 min at 37 �C. The mixture was incubated for w30 min at 37 �C,
after which 4 mL of 6� sample buffer (50% glycerol, 1% bromophenol blue, and 1%
cylene cyenol FF in TBE buffer) was added, and the samples were loaded onto 2%
agarose gels containing 0.05 mg/mL ethidium bromide (EtBr). Electrophoresis was
performed at 130 mV and w52 mA for 15 min, and the resulting gels were photo-
graphed under UV-illumination. The pictures were digitized and analyzed with
Scion image analysis software to determine the mean density of siRNA bands. The
binding percentage was calculated based on the relative intensity of free siRNA band
in each well with respect to wells with free siRNA (i.e., in the absence of any poly-
mers). The binding for each polymer was tested at least in 2 independent
experiments.

2.6. siRNA release by polyanion competition

The ability of complexes to release siRNA after a challenge with the competing
polyanionic heparin was determined as a measure of complex stability [29].
Complexes were prepared at polymer:siRNA mass ratio of 32:1 to ensure complete
binding of siRNA by the polymers, and then incubated with 0.78, 1.52, 3.04, 6.08,
12.48, and 24.32 mg of heparin sulfate at 37 �C for 1 h. The solutions were run on
agarose gel as described earlier. Results were presented as average of at least 2
independent experiments.

2.7. Serum stability study

To determine the protective role of the polymers against siRNA degradation,
PEO-b-P(CL-g-polyamine)/siRNA PIC micelles were prepared at several polymer-
s:siRNA weight ratios, ranging from 4:1 to 32:1 and incubated with 25% fetal bovine
serum (FBS) for 24 h at 37 �C. At the same time, free siRNA and PEI/siRNA (1:1 in
weight ratio) were incubated with 25% FBS at 37 �C for 24 h as the negative and
positive controls, respectively. Samples were then incubated for 1 h with excess of
heparin to ensure complete release of siRNA from the formulation. The intact siRNA
percentage was then analyzed by agarose gel electrophoresis as described earlier.
The results shown represent an average of at least 3 independent experiments.

2.8. Characterization of the self-assembly of PEO-b-P(CL-g-polyamine)/siRNA PIC
micelles

A change in the fluorescence excitation spectra of pyrene in the presence of
varied concentrations of PEO-b-P(CL-g-polyamine) block copolymers was used to
determine the critical micellar concentration (CMC) according to the method
described previously [30]. To determine the particle size and z-potential, copolymer/
siRNA PIC micelles were prepared at 32:1 of copolymer:siRNA weight ratio. PEI/
siRNA complex was prepared at 1:1 weight ratio for this analysis. Their average
diameters and size distributions were estimated by dynamic light scattering (DLS)
using Malvern Zetasizer 3000 at 25 �C. Zeta-potential of the prepared complex was
also evaluated by the laser-doppler electrophoresis method using Zetasizer 3000.

2.9. siRNA uptake study by flow cytometry

To assess the ability of polymers to transfer siRNA into MDR-1-transfected
MDA435/LCC6 cells, carboxyfluorescein (FAM)-labeled siRNA was formulated in the
PIC micelles of different PEO-b-P(CL-g-polyamine) copolymers at 32:1 of poly-
mer:siRNA weight ratio or in PEI at 1:1 weight ratio according to the above-
mentioned method. MDA435/LCC6 cells in 6-well plates (5�104 cells per well) were
pulsed with PICs containing 100 nM of siRNA. After incubation for 3 h, the cells were
washed with cold PBS, trypsinized and the uptake of FAM-labeled siRNA was
detected by a Becton–Dickinson FACSort� flowcytometer (Franklin Lakes, NJ). The
data were analyzed with CellQuest� software (Becton–Dickinson).

2.10. siRNA uptake and cellular distribution study by confocal microscopy

Confocal fluorescent microscopy was used to assess the intracellular trafficking
of siRNA. FAM-labeled siRNA was complexed with PEO-b-P(CL-g-SP), PEO-b-P(CL-g-
TP), PEO-b-P(CL-g-DP) in the weight ratio of 32:1 or PEI in the weight ratio of 1:1.
Cells grown on the glass coverslips in a 12-well plate were incubated with the
complexes for 1 and 3 h. At the end of incubation period, the cells were washed three
times with PBS, fixed in paraformaldehyde in PBS for 10 min. For nucleus labeling,
fixed cells were washed with PBS and then incubated with DAPI (Molecular Probes,
Invitrogen Co., OR, USA) for 15 min. To observe the intracellular distribution of the
PIC micelles, cells were incubated with LysoTracker Red (50 nM, Molecular Probe,
Invitrogen Co., OR, USA) for 0.5 h at the end of uptake study for endosome/lysosome
labeling. The cells were then washed three times with PBS and stored at 4 �C.
Localization of complexes in cells was visualized by a Zeiss 510 LSMNLO confocal
microscope (Carl Zeiss Microscope systems, Jena, Germany) with identical settings
for each confocal study.

2.11. Transfection of MDR-1-targeted siRNA to silence P-glycoprotein (P-gp)
expression

MDR-1 siRNA was complexed with PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-TP)
at a mass ratio of 32:1 (polymer:siRNA) or PEI at mass ratio of 1:1 as previously
described. MDR-1-transfected MDA435/LCC6 cells (4000 cells/well) were seeded
into an 8-well plate and incubated overnight for attachment. The prepared
siRNA/polymer complexes were added and incubated with the cells at siRNA
concentrations of 100, 200 and 300 nM for another 48 h at 37 �C. The cells were
washed with PBS, trypsinized and resuspended in 500 mL of 5% BSA in PBS, and
incubated with FITC-labeled anti-human P-gp antibody (20 mL) for 30 min at
4 �C. After that, cells were washed three times with cold PBS buffer, and the P-
gp level was measured by a Becton–Dickinson FACSort� flowcytometer. The
RNAi effect was also observed by confocal microscopy. Toward this, cells grown
on coverslips were treated with MDR-1 siRNA/polymer complexes (300 nM) for
48 h at 37 �C, washed with fresh media and incubated with FITC-labeled anti-
human P-gp antibody (20 mL/1 mL) for another 30 min at 4 �C. The cells were
then washed three times with PBS, fixed in paraformaldehyde in PBS for
10 min, treated with DAPI for nuclei staining, and examined by confocal
microscopy.



Table 1
Characteristics of PEO-b-P(CL-g-polyamine) polymers and the prepared polymer/
siRNA PIC micelles

Polymera Polymer Mn
b

(g mol�1)
CMCc

(mM)
Average
diameter
(nm)

z-potential
(mV)

PEO114-b-P(CL-g-SP)12-6 8300 3.15� 0.22 56.8� 4.2 2.50� 0.36
PEO114-b-P(CL-g-TP)12-6 8500 3.65� 0.18 65.4� 4.2 2.27� 0.12
PEO114-b-P(CL-g-DP)12-9 9170 1.95� 0.22 90.5� 3.2 3.33� 0.90

a The first subscript number stands for the polymerization degree of each block
and the second one stands for the number of repeated unit with substituted poly-
amine groups based on 1H NMR analysis.

b Determined by 1H NMR.
c Measured from the onset of a rise in the intensity ratio of peaks at 339 nm to

peaks at 334 nm in the fluorescence excitation spectra of pyrene plotted versus
logarithm of polymer concentration.
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3. Results

3.1. Synthesis and characterization of PEO-b-PCL with grafted
polyamine groups

The PEO-b-P(CL-g-SP), PEO-b-P(CL-g-TP) and PEO-b-P(CL-g-
DP) were synthesized from NHS-activated PEO-b-PCCL (Scheme
1). The final structure of copolymer was confirmed by 1H NMR
(Fig. 1) and IR (Fig. 2). The characteristics of prepared block
copolymers are shown in Table 1. Peaks corresponding to specific
polyamine groups of SP, TP and DP were observed at 2.1–3.2 ppm
in the 1H NMR spectra, indicating the successful conjugation of
polyamine groups to block copolymers (Fig. 1). Based on the
intensity ratio of proton peak for the polyamine groups
(–NHCH2–, d 2.1–3.2) to that for the PCL segment (OC–(CH2)4–
CH2O–, d 4.05), the polyamine substitution levels of the
copolymer were calculated at w48, w50 and w80% for PEO-b-
P(CL-g-SP), PEO-b-P(CL-g-TP) and PEO-b-P(CL-g-DP), respectively.
Successful synthesis of PEO-b-P(CL-g-polyamine)s was also
confirmed by IR spectra (Fig. 2). PEO-b-P(CL-g-SP) and PEO-b-
P(CL-g-TP), which contain primary and secondary amine groups
in their structures showed N–H stretch at w3260 and 3400 cm�1,
while PEO-b-P(CL-g-DP) which contains secondary and tertiary
amine groups, showed N–H stretch at w3260 cm�1. The CMC of
PEO-b-P(CL-g-polyamine) polymers (1.95–3.65 mM) was deter-
mined to be significantly higher than that of PEO-b-PCL (0.19 mM),
but lower than that of PEO-b-PCCL (12.2 mM). Conjugation of the
more hydrophobic polyamine DP to PEI-b-PBCL led to a copoly-
mer with a lower CMC value as compared to PEO-b-P(CL-g-SP)
and PEO-b-P(CL-g-TP) (Table 1).

3.2. Cytotoxicity and haemolysis study

Cytotoxicity of synthesized PEO-b-P(CL-g-polyamine)s was
evaluated in MDR-1-transfected MDA435/LCC6 cells using the MTT
Fig. 2. IR spectra of (a) PEO-b-PCCL, (b) PEO-b-P(CL-g-SP), (c) PEO-b-P(CL-g-TP) and (d)
PEO-b-P(CL-g-DP).
assay (Fig. 3A). Compared to PEI (IC50, 6.58 mg/mL), PEO-b-P(CL-g-
SP), PEO-b-P(CL-g-TP) and PEO-b-P(CL-g-DP) showed significant
lower cytotoxicity against MDA435/LCC6 cells with IC50 values of
452, 165, and 130 mg/mL, respectively. Compared to PEO-b-PCL
(IC50> 500 mg/mL), PEO-b-P(CL-g-TP) and PEO-b-P(CL-b-DP) were
more cytotoxic, whereas grafting of the endogenous polyamine SP
to the PCL block didn’t increase the cytotoxicity of PEO-b-PCL
significantly. The polyamine-grafted copolymers did not display
a significant haemolytic activity even at highest polymer concen-
tration of 1 mg/mL (<1%). Compared to these copolymers, PEI
showed dose-dependent haemolysis up to 4% under our experi-
mental conditions (Fig. 3B).
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Fig. 3. Cytotoxicity (A) and haemolytic activity (B) of the synthesized PEO-b-P(CL-g-
polyamine) against MDA435/LCC6 resistant cancer cells and RBC cells, respectively.
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3.3. siRNA binding and formation of PIC micelles

Agarose gel electrophoresis was utilized to detect complex
formation between the synthesized copolymers and the siRNA. This
was based on the disappearance of free siRNA bands in the agarose
gels. As expected, the synthesized PEO-b-P(CL-g-polyamine) was
capable of effectively binding siRNA, resulting in retardation or
disappearance of siRNA bands in agarose gel (Fig. 4A). When the N/
P ratios were higher than 10:1, the migration of siRNA was
completely retarded for all PEO-b-poly(CL-g-polyamine) copoly-
mers. The binding ability of the polycationic copolymers were not
significantly different from each other, but less than that of PEI as
indicated by a significant left shift in binding versus N/P ratio plots
(Fig. 4B). There were no obvious differences in siRNA binding
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The amphiphilic block copolymer is known to self-assemble into
micelles in aqueous solution when the polymer concentration is
above its CMC. The formation of PIC micelles of various PEO-b-P(CL-
g-polyamine)s with siRNA was investigated by DLS and z-potential
measurements (Table 1). The average diameters of the PIC micelles
ranged from 57 to 91 nm depending on the copolymer structure.
The PIC particles formed from the PEI was significantly larger
(590 nm). The z-potential of the PIC micelles from the synthesized
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el in (B) shows the percentage of siRNA binding versus polymer:siRNA weight ratio.
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copolymers were relatively low (2.3–3.3 mV) as compared to the
PIC particles formed from PEI (32.7 mV).

3.4. Release of siRNA from polymer/siRNA PIC micelles with
polyanion heparin

The siRNA release from various PICs in the presence of heparin is
summarized in Fig. 5. The siRNA release from its complex was
dependent on heparin concentration. The ratio of heparin to
polymer which leads to 50% of siRNA release (RR50) from the
complexes was used as a measure of propensity for dissociation.
Accordingly, PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-TP) formed more
stable complexes with siRNA as compared to PEO-b-P(CL-g-DP),
based on the higher RR50 values for the former copolymers (0.10
and 0.12 mg/mg, heparin:polymer, respectively) as compared to the
RR50 value of 0.07 mg/mg, heparin:polymer for PEO-b-P(CL-g-DP).
Complete siRNA release from all PIC micelles was observed when
the heparin:polymer weight ratio reached 0.2:1. All the PEO-b-(CL-
g-polyamine)/siRNA complex micelles showed significantly higher
siRNA release than the PEI/siRNA complex micelles (RR50¼ 9.22 mg/
mg, heparin:polymer), even though the latter was prepared at the
very low polymer:siRNA weight ratio of 1:1.

3.5. Protection of siRNA in PIC micelles from serum degradation

The protective effect of the PIC micelles against siRNA degra-
dation was assessed in serum (Fig. 6). Free siRNA was not stable in
25% FBS and it was completely degraded with 24 h incubation. For
the PEO-b-P(CL-g-polyamine)/siRNA PIC micelles, even the lowest
applied polymer:siRNA ratio (8:1) demonstrated a significant
protective effect for siRNA where the percentages of intact siRNA in
these PIC micelles reached to w70%. When the ratio is above 16,
siRNA was almost fully recoverable and was protected from serum
degradation. The synthesized copolymer did not demonstrate
a significant difference in the siRNA protection ability.

3.6. Cellular uptake study

FAM-labeled negative siRNA was used to study cellular uptake of
siRNA/polymer PIC micelles or PEI/siRNA complexes. Based on flow
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polyanionic heparin and amount of complex dissociation was determined assessing
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cytometry, the cellular uptake of siRNA formulated in various PICs
by MDA435/LCC6 cells was in the order of PEI> PEO-b-P(CL-g-
TP)> PEO-b-P(CL-g-SP)> PEO-b-P(CL-g-DP)¼ free siRNA (Fig. 7A
and B). The cellular uptake was confirmed with confocal micros-
copy observation (Fig. 7C). Clear siRNA fluorescence was exclusively
observed in cytoplasm when siRNA was formulated in PEO-b-P(CL-
g-SP) or PEO-b-P(CL-g-TP) micelles as indicated by the red arrows
(Fig. 7C-a and C-b, respectively). siRNA formulated in PEO-b-P(CL-
g-DP) micelles (Fig. 7C-c) or siRNA alone (Fig. 7C-d) gave almost no
detectable fluorescence in the cells. siRNA formulated in PEI
produced large particles with bright fluorescence in cytoplasm as
well as in nucleus (Fig. 7C-e). Noticeably, the siRNA appeared to
remain in more distinct particles when delivered with the PEI,
whereas a more diffuse pattern was evident for the siRNA delivered
with the PEI-b-(CL-g-polyamines).
3.7. Endosome/lysosome escape for siRNA/polymer complex
micelles

PEO-b-P(CL-g-polyamine)s were designed to have protonatable
amino groups with pKas around the endosomal pH, so as to
introduce high buffering capacity that will facilitate endosomal/
lysosomal escape [11]. The intracellular uptake of the PIC micelles
by endocytosis and the subsequent endosome/lysosome escape
were investigated and compared to PEI/siRNA PIC particles using
confocal microscopy. The typical images of cells treated with PEO-
b-P(CL-g-TP)/siRNA PIC micelles or PEI/siRNA PIC particles are
shown in Fig. 8. At 1 h of incubation, a large fraction of PIC micelles
or particles were localized in the acidic compartments as indicated
by the yellow color in the merged fluorescence image (Panel d) of
the FAM-labeled siRNA (green, Panel a) and LysoTracker (red, Panel
b), indicating that the PIC micelles or PEI particles were internalized
into cells by endocytosis to form endosomes/lysosomes. At 3 h of
incubation, a definite fraction of siRNA (green) in the cytoplasm
was not co-localized with LysoTracker (red) and the green fluo-
rescence became relatively stronger than the red fluorescence,
suggesting that this fraction was located in a compartment other
than the acidic endosomes/lysosomes or the endosomes/lysosomes
were disrupted. PEO-b-P(CL-g-SP)/siRNA PIC micelles showed
similar results as PEO-b-P(CL-g-TP)/siRNA micelles did (data not
shown). Yellow and green fluorescence were seen at the same slide
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even after 1 h of incubation for both PEI/siRNA and PEO-b-P(CL-g-
TP)/siRNA complexes (Fig. 8e1 and e2 and f1 and f2) pointing to the
efficient and rapid endocytosis and endosome/lysosome escape of
both delivery systems. The size of the formed endosomes appeared
much larger for PEI delivery system. This is not surprising since the
size of endosomes is dependent on the endocytosed particles
(570 nm for PEI particles versus 65 nm for PEO-b-P(CL-g-TP)
micelles). The size of endosomes may become larger by fusion of
many smaller endosomes which was also observed in our fluores-
cent microscopy pictures (Fig. 8e3 and f1). A comparison between
distribution of green fluorescence (related to complexed siRNA)
between cells transfected with PEI and PEO-b-P(CL-g-TP) micelles
either at 1 or 3 h incubation period, reveals a more homogenous
distribution of the P(CL-g-TP) micelles throughout the cells. This
may reflect an easier release of siRNA from its micellar carrier
compared to PEI, or be simply due to the smaller size of P(CL-g-TP)
micelles compared to PEI complexes. It is worthy to note that the
timescale of cellular endocytosis to form endosomes and endo-
some/lysosome escape are very heterogeneous. Endocytosis and
endosome/lysosome escape at different phases can occur in same
single cell and at same time point (Fig. 8e1–e4 and f1–f4).

3.8. MDR-1 siRNA silenced P-gp expression on MDA435/LCC6 cells

The ability of PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-TP) to
deliver a functional siRNA was evaluated using MDR-1-targeted
siRNA to inhibit P-gp expression in MDA435/LCC6 cells. PEI was
used as a control carrier. The relative P-gp expression levels by
cells treated with different concentrations of anti-MDR-1 or
negative siRNA formulations are shown in Fig. 9. Negative siRNA
containing formulations failed to inhibit P-gp expression at all
concentrations (Fig. 9A). The silencing of P-gp expression was
dependent on the concentration of the functional siRNA (Fig. 9B).
100 nM of siRNA in all formulations didn’t produce significant
inhibition in the P-gp expression. MDR-1 siRNA (200 nM) formu-
lated in PEO-b-P(CL-g-SP) or PEO-b-P(CL-g-TP) micelles was as
effective as PEI/MDR-1 siRNA (1:1 ratio) to inhibit P-gp expression
(w20% of P-gp inhibition). When siRNA concentration was



Fig. 8. Assessment of endosomal escape for PEO-b-P(CL-g-TP) and PEI after intracellular uptake by endocytosis upon 1 and 3 h incubation by confocal microscopy. The cells were
treated with FAM-labeled siRNA formulated in PEO-b-P(CL-g-TP) and PEI (green, panel a); Lysosomes and nuclei were stained by LysoTracker (red, panel b) and DAPI (blue, panel c),
respectively, and the images were merged in panel d. The endosomes/lysosomes in cells treated with PCI micelles and particles in different phases were magnified in e and f,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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increased to 300 nM, PEO-b-P(CL-g-TP)/MDR-1 siRNA showed
significantly higher inhibition of P-gp expression (w60% of P-gp
inhibition) than PEO-b-P(CL-g-SP)/MDR-1 siRNA complex micelles
and PEI/siRNA complex (w50% of P-gp inhibition).

The inhibition of P-gp expression mediated by MDR-1 siRNA was
further observed by confocal microscopy. Fig. 10 shows the
fluorescence images of the cells treated with MDR-1 siRNA or
negative siRNA complex (300 nM), and stained with FITC-labeled
anti-P-gp monoclonal antibody. PEO-b-P(CL-g-SP) and PEO-b-P(CL-
g-TP)/MDR-1 siRNA complex micelles as well as PEI/MDR-1 siRNA
complex resulted in weaker fluorescence (green) on the cell
membrane than the cells treated with negative siRNA, confirming
that P-gp expression on the cell membrane was effectively inhibi-
ted by MDR-1 siRNA complex micelles.

4. Discussion

In this study, we grafted different polyamine groups to the PCL
block of the amphiphilic PEO-b-PCL copolymer to obtain a novel
family of biodegradable and self-associating polymers with
potential for in vivo siRNA delivery. Amphiphilic PEO-b-polyesters
and PEO-b-poly(L-amino acid)s (PEO-b-PLAA) represent two tradi-
tional polymeric biomaterials for self-assembly into micelles for
drug delivery in vivo [31]. PEO-b-PLAAs have demonstrated versa-
tile use both in drug and in gene delivery due to the introduction of
functional groups in the PLAA block. PEO-b-polyesters such as PEO-
b-PCL and PEO-b-PLGA have been of interest in drug delivery
because of their excellent long-term safety profiles in clinical
application and lower CMC. However, their use in gene delivery was
limited due to the absence of cationic moieties on their structure
and untailorable polyester backbone. To encapsulate genetic
cargoes such as plasmid DNA or siRNA into the nonionic polyester
based particulate carriers, complicated procedures or organic
solvents that could denature nucleic acids might be used to attain
sufficient loading efficiency [32]. However, due to weak conden-
sation, the nucleic acids tend to be released rapidly from the
carriers. In addition, the nucleic acids are more susceptible to
nuclease attack since they are not typically condensed in these
carriers. Attempts have been made to modify the polyester block
with cationic residues that can provide anchoring site for genetic
cargoes. To date, most of the modifications were focused on
introducing cationic blocks (e.g. PEI or PLL) to the end of polyester
homo or block copolymers [33–35]. To our best knowledge,
modification of the polyester backbone by introducing cationic side
groups on ester repeat unit has not been reported. Owing to the
biocompatibility of the PEO shell and biodegradability of the PCL
core, the PEO-b-P(CL-g-polyamine) PIC micelles prepared in the
current study are expected to be safe for in vivo administration.
Moreover, the biodegradability of the PCL core along with the
presence of short polycations in the PEO-b-P(CL-g-polyamine) PIC
micelles are expected to provide the required buffering capacity
and osmotic drive required for efficient endosmal escape and
expression of the incorporated siRNA.

The developed amphiphilic copolymers were shown to be non-
haemolytic and less toxic than PEI against the chosen cancer cell
line. They were also shown to be able to effectively bind siRNA,
self-assemble into micelles and protect siRNA from degradation by
nuclease in serum. The polyamines SP, TP and DP, were grafted to
PCL block to provide high density of amine for siRNA binding and
protection. However, the substitution is not complete and the
presence of unsubstituted carboxyl groups in the PCL block may
partly counterbalance their siRNA binding capacity by formation
of complexes through electrostatic interactions between the
protonated amines and de-protonated carboxyl groups on the PCL
block. In addition, grafting of polyamine led to higher CMCs for the
copolymers. To assure complete siRNA binding and micelle
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formation, the PIC micelles were prepared at a high polymer:-
siRNA weight ratio (32:1), which is equivalent to N/P ratios of 20–
29. The prepared PEO-b-P(CL-g-polyamine)/siRNA complexes was
shown to form micelle with a particle size <100 nm and relatively
neutral surfaces (w3.0 mV) pointing to the effectiveness of PEO in
shielding the cationic core charge [36,37]. This is in contrast to PEI/
siRNA complexes that displayed a particle size of 570 nm with
positively charged surfaces (þ32.7 mV). More importantly, siRNA
formulated in the developed PIC micelles was well protected
against nuclease degradation and it maintained its integrity up to
24 h after incubation in 25% serum. This is comparable to the
siRNA protective effect of PEI. The resistance to nuclease degra-
dation is essential for a successful siRNA delivery both in vitro and
in particular in vivo. siRNA is highly susceptible to nuclease as
evidenced by the degradation results in this study, where more
than 90% of free siRNA were destroyed in 25% serum within 4 h of
incubation (Fig. 6) [38].

The cellular uptake of micelles is assumed to be dependent on
the micellar shell which directly interfaces the cells. Other param-
eters such as the nature of the cells, the micelle core, and micelle
particle size may also affect their cellular uptake [39–42]. We found
that amphiphilic polycationic polymers with primary amine end
(e.g. SP and TP) in their core-forming structures were more efficient
for siRNA cellular uptake compared to polymers with tertiary amine
end (DP) (Fig. 7). The increased association of the SP and TP con-
taining PIC micelles with siRNA may explain the reason behind
facilitated cellular uptake of siRNA by these structures [42]. There is
a possibility for the folding of the amine groups grafted on the
polyester as a result of formation of hydrogen bonds between them
and oxygen on the PEO block [43], leading to the insertion of the
polyamine-grafted polyester block into the micellar shell. Moreover,
given the reported structural effects of polyamine on cellular
internalization [44], a contribution from exposure of primary
amines in PEO-b-P(CL-g-SP) or PEO-b-P(CL-g-TP) unimers in
increasing the cellular uptake siRNA can be speculated. Finally,
a larger particle size might have attributed to the lower cellular
uptake of PEO-b-P(CL-g-DP)/siRNA micelles compared to PEO-b-
P(CL-g-SP)/siRNA or PEO-b-P(CL-g-TP)/siRNA micelles.

Another distinctive function of grafting polyamine groups to
PCL block is that these polyamine molecules contain protonatable
amino groups with different pKas, which are designed to intro-
duce high buffering capacity for membrane disruption that will
facilitate endosomal/lysosomal escape [11,45]. Confocal images
further revealed that PEO-b-P(CL-g-SP) and PEO-b-P(CL-g-TP) can
specifically deliver the siRNA into cytoplasm, whereas siRNA
delivered by PEI was found to be in cytoplasm as well as in the
nucleus (Fig. 7C). Accumulation of siRNA in the cytoplasm where
its target mRNA locates (rather than nucleus) provides another
advantage for the developed PEO-b-P(CL-g-polyamine)s over PEI
for siRNA delivery [46]. The specific cytoplasmic delivery of siRNA
might be attributed to greater propensity of siRNA to dissociate
when complexed by PEO-b-P(CL-g-polyamine)s. The nucleus
trafficking of genetic cargoes delivered by PEI based carrier was
also observed by others [47–49]. PEI with high charge density
would efficiently condense siRNA to form tightly compact
complexes, which remain intact after cellular internalization,
endosomal/lysosomal escape, and may then enter the nucleus
together with its siRNA cargo. However, due to lower amine
density and the presence of unsubstituted carboxyl group, PEO-b-
P(CL-g-SP) or PEO-b-(CL-g-DP) could form loosely compact
complex, and the complexed siRNA might dissociate from the
polymer before or after endosome escape, limiting its localization
to the cytoplasm. The biodegradability of the PCL core may also
assist in this process. The different morphology of fluorescence in
cells also suggests a possibility for different siRNA compaction
leading to changes in siRNA intracellular trafficking for PEI as
compared to PEO-b-P(CL-g-polyamine) PIC micelles (Fig. 4A).

The endocytosis and endosome escape of PEO-b-P(CL-g-SP)/
siRNA and PEO-b-P(CL-g-TP)/siRNA after cellular uptake were
further confirmed by confocal microscopic observations (Fig. 8).
Although the theory of proton sponge hypothesis is still arguable
[50], it has been extensively used to design effective carriers for
delivery of genetic cargoes [11,45]. The pH-sensitive cell
membrane disruption of siRNA carriers composed of polyamine
has well been evidenced and proved to be directly related to their
cellular siRNA delivery efficiency [45,51]. Micellar structures
based on PEO-b-PLAA with attached polyamine groups were
endowed ability for endosome escape and have displayed
impressive gene knockdown activity in vitro [11]. Consistent with
these findings, we have seen a correlation between efficient
endocytosis, endosomal escape and efficient gene silencing by
siRNA micelles (Figs. 8–10).

Multidrug resistance, which is commonly caused by over-
expression of P-gp encoded by MDR-1, has been one of the major
causes of the failure of chemotherapy in cancer patients [52,53].
Modulations of multidrug resistance by pharmaceutical agents,



Fig. 10. Fluorescence images of MDA435/LCC6 resistant cells transfected with 300 nM of MDR-1 siRNA or negative siRNA formulated in PEO-b-P(CL-g-SP), PEO-b-P(CL-g-TP) and PEI
complex. The cells were stained with FITC-labeled P-gp antibody (green) and DAPI (blue) for P-gp and nuclei staining, respectively.
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antibodies, antisense oligonucleotides, and inhibitors of signal
transduction have been pursued either by inhibition of P-gp
activity or by inhibition of P-gp expression. The clinical benefit of
these approaches remains to be realized, however [54–56]. RNAi
mediated gene silencing was shown to be specific and potent, and
it has been applied to overcome P-gp mediated MDR in different
in vitro models [54,57]. MDR-1 siRNA formulated in PEO-b-P(CL-g-
polyamine) micelles would provide better chances for tumor-
targeted delivery of siRNA through systemic administration. In
this in vitro evaluation, we found that the polymeric formulations
mediate siRNA silencing of P-gp in a dose-dependent manner in
MDA435/LCC6 cells. PEO-b-P(CL-g-TP)/MDR-1 siRNA (300 nM)
showed higher P-gp expression inhibition than PEO-b-P(CL-g-SP)/
MDR-1 siRNA (300 nM), which may be caused by the higher
cellular uptake of MDR-1 siRNA when formulated in PEO-b-P(CL-
g-TP) micelles. It is not surprising that higher cellular uptake of
MDR-1 siRNA formulated with PEI did not demonstrate any
improved P-gp silencing compared to MDR-1 siRNA formulated in
PEO-b-P(CL-g-SP) or PEO-b-P(CL-g-TP) micelles, since siRNA
formulated PEO-b-P(CL-g-polyamine) micelles appeared to be
more efficiently released from complex micelles after cellular
uptake. Despite a high concentration of MDR-1 siRNA (300 nM),
the maximum inhibition of P-gp expression was <60% for all the
MDR-1 siRNA formulations. The lack of complete inhibition is
likely due to the high content of P-gp in the chosen cell line (since
these cells are transfected for overexpression of P-gp), and the
transient duration of P-gp gene silencing effect [58]. The extent of
P-gp inhibition remains to be seen in more primary cell lines that
express clinical levels of P-gp. A further increase in the siRNA
concentration may lead to complete P-gp gene silencing, but will
increase the risk of off-target suppression of other genes due to
the sequence similarity [59]. Finally since P-gp is also expressed
in normal tissues such as blood brain barrier, its non-selective
silencing may lead to complications and toxicity by P-gp
substrate. Using cancer specific targeting ligands to modify the
polycationic micelles is expected to increase the silencing effi-
ciency more selectively in cancerous cells rather than normal cells
that express P-gp [60]. Targeted siRNA delivery to silence P-gp
gene expression and evaluation of the effect on sensitivity of MDR
cells to anticancer drugs are underway in our research group.

5. Conclusions

In conclusion, we report on the design, synthesis and evaluation
of a novel family of PEO-b-polyester based polycationic copolymers
and explored their potential for siRNA delivery. We demonstrated
that all these amphiphilic polycationic copolymers can effectively
bind siRNA, self-assemble into micelles and protect siRNA from
degradation by nuclease in serum. PEO-b-P(CL-g-SP) and PEO-b-
P(CL-g-TP) micelles in particular can efficiently deliver siRNA into
cytoplasm by endocytosis and facilitate endosome escape after
cellular uptake. MDR-1-targeted siRNA formulated in PEO-b-P(CL-
g-SP) and PEO-b-P(CL-g-TP) exhibited efficient gene silencing for P-
gp expression. The synthetic amphiphilic PEO-b-P(CL-g-polyamine)
block copolymers present a promising efficient carrier for siRNA
delivery especially for systemic administration.
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Figures with essential colour discrimination. Certain figures in
this article, particularly Figures 8 and 10, are difficult to interpret in
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